UCLA at TREC 2014 Clinical Decision Support Track: Exploring Language Models, Query Expansion, and Boosting

نویسندگان

  • Jean I. Garcia-Gathright
  • Frank Meng
  • William Hsu
چکیده

For the TREC 2014 Clinical Decision Support track, participants were given a set of 30 patient cases in the form of a short natural language description and a data set of over 700,000 full-text articles from PubMed Central. The task was to retrieve articles relevant to the patient cases and one of three types of clinical question: diagnosis, test, and treatment. This paper describes the retrieval system developed by the Medical Imaging Informatics group at the University of California, Los Angeles. One manual run and four automatic runs were submitted. For the automatic runs, a variety of retrieval strategies were explored. Two retrieval methods were compared: the vector space model with TF-IDF similarity, and a unigram language model with Jelinek-Mercer smoothing. The performance of retrieving on abstracts alone was compared to that of full-text. Finally, a simple set of rules for query expansion and term boosting was developed based on recommendations from domain experts. Submissions for 26 groups were pooled and evaluated by a team of medical librarians and physicians at the National Institute of Standards and Technology. The results showed that 1) the language model outperformed the vector space model for automatically-constructed queries, 2) searching full-text was more e ective than searching abstracts alone, and 3) boosting improved the ranking of retrieved documents for "test" topics, but not "diagnosis" topics. Our best automatic run used the language model, full-text search, query expansion, and no boosting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

San Francisco State University at TREC 2014: Clinical Decision Support Track and Microblog Track

The Clinical Decision Support Track in TREC 2014 involved identifying biomedical articles that could assist in answering generic clinical questions. This paper discusses the methodologies adopted by the system, Runsystem2, that we built for answering these medical questions. Runsystem2 operates by translating a narrative of a patient's case report into a list of structured medical concepts whic...

متن کامل

NLM NIH at TREC 2016 Clinical Decision Support Track

In this paper, we present our approach for TREC 2016 Clinical Decision Support (CDS) track. We combined methods for question analysis, query expansion, document retrieval and result fusion to find relevant documents to a given clinical question. We submitted three automatic runs using the summaries and two automatic runs using the notes, provided for the first time at the CDS track. Our experim...

متن کامل

CBIA VT at TREC 2015 Clinical Decision Support Track - Exploring Relevance Feedback and Query Expansion in Biomedical Information Retrieval

We present the description and results of our participation in the Clinical Decision Support track at TREC 2015. In this task, our goal was to use clinical narratives to retrieve biomedical articles. We compared the performance of pseudo relevance feedback, query expansion based on UMLS synonyms, and query expansion with personalized PageRank. In addition, we investigated the impact of differen...

متن کامل

Semi-Supervised Information Retrieval System for Clinical Decision Support

This article summarizes the approach developed for TREC 2016 Clinical Decision Support Track. In order to address the daunting challenge of retrieval of biomedical articles for answering clinical questions, an information retrieval methodology was developed that combines pseudo-relevance feedback, semantic query expansion and document similarity measures based on unsupervised word embeddings. T...

متن کامل

NovaSearch at TREC 2015 Clinical Decision Support Track

This paper describes the participation of the NovaSearch group at TREC Clinical Decision Support 2014. As this is the first edition of the track, we decided to assess the performance of multiple information retrieval techniques: retrieval functions, re-ranking, query expansion and classification of medical articles into question categories. The best performing run was based on an ensemble of st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014